
The MOSIX Cluster Management System for

Parallel Computing on Linux Clusters and

Multi-Cluster Private Clouds

White Paper

http://www.MOSIX.org

OVERVIEW

MOSIX1 is a cluster management system that provides users

and applications with a single-system image [1]. In a MOSIX

cluster, users can run multiple processes on different nodes by

allowing MOSIX to seek resources and automatically allocate

(and migrate) processes among nodes, without changing the

interface and the run-time environment of their respective login

nodes. As a result, users need not change or link applications

with any special library, they need not modify applications,

login or copy files to remote nodes or even know where their

programs run.

Originally, MOSIX distributions for Linux-2.2 and Linux-

2.4 were designed to manage a single cluster [4]. Starting from

Linux-2.6, MOSIX was extended with a comprehensive set

of features for managing clusters, multi-clusters, e.g., among

different groups in an organization [6] and clouds. Owners

of clusters can, for example, share their resources from time

to time, while still preserving their right to disconnect their

clusters at any time, doing so without sacrificing running guest

processes from other clusters. The latest distribution is MOSIX

release 4 (MOSIX-4).

MOSIX supports both interactive processes and batch jobs.

It incorporates dynamic resource discovery and automatic

workload distribution. The resource discovery algorithm pro-

vides each node with the latest information about resource

availability and the state of other nodes. Based on this informa-

tion and subject to priorities, the process migration algorithms

can initiate reallocation of processes among nodes, e.g., for

load-balancing, or to move processes from a disconnecting

cluster.

In a MOSIX multi-cluster private cloud, assigning priorities

ensures that local processes and processes with a higher

priority can force out guest (migrated) processes with a lower

1MOSIX R© is a registered trademark.
Copyright c©1999-2021. All rights reserved.

priority. Flexible configurations are supported, where clusters

can be shared (symmetrically or asymmetrically) among users

of different clusters. Users need not know the details of the

configuration nor the state of any resource.

Other features of MOSIX include migratable sockets - for

direct communication between migrated processes; a secure

run-time environment (sandbox) that prevents guest processes

from accessing local resources in hosting nodes; as well as

checkpoint and restart.

MOSIX is implemented as a set of utilities that provide

users and applications with a distributed Linux-like run-time

environment. MOSIX supports most Linux features that are

relevant to ordinary, non-threaded Linux applications, so that

such programs can run unchanged. The latest distribution,

MOSIX-4, is implemented in user-mode and no longer re-

quires a kernel patch.

Due to networking and management overheads, MOSIX is

particularly suited to run compute intensive and other applica-

tions with low to moderate amounts of I/O. Tests of MOSIX

show that the performance of several such applications over a

1Gb/s campus backbone is nearly identical to that within the

same cluster [6].

MOSIX should be used in trusted environments over secure

networks, where only authorized nodes are allowed. These

requirements are standard within clusters and private clouds.

Other than these requirements, MOSIX could be used in any

configuration with multiple computers.

A production campus private cloud, with 7

MOSIX clusters (about 1300 cores) can be seen at

http://www.MOSIX.org/webmon. Most clusters are private,

belonging to different research groups. The rest are shared

clusters of workstations in student labs. The features of

MOSIX allow better utilization of resources, including idle

workstations in student labs, by users who need to run parallel

applications but cannot afford such a large private cluster.



II. BUILDING BLOCKS

This section describes the two building blocks of MOSIX:

configurations and processes.

A. Configurations

A MOSIX cluster is a set of connected servers and work-

stations (nodes), that are administrated by a single owner and

run the same version of MOSIX. In a MOSIX cluster, each

node maintains information about availability and the state of

resources in the other nodes, see Sec.III-A for details.

A MOSIX multi-cluster private cloud is a collection of

MOSIX clusters that run the same version of MOSIX and

are configured to work together. A MOSIX cloud usually

belongs to the same organization, but each cluster may be

administrated by a different owner or belong to a different

group. The cluster-owners are willing to share their computing

resources at least some of the time, but are still allowed to

disconnect their clusters from the cloud at any time.

In a MOSIX cloud, each node maintains information about

the availability and state of resources of the other nodes in

all the connected clusters. Different clusters may (or may not)

have a shared environment such as a common NFS file-system.

Nevertheless, MOSIX processes can run in remote clusters

while still using the environment provided by their respective

private home clusters. From the user’s perspective, MOSIX

transforms such a cloud into a single cluster by preserving the

user’s local run-time environment.

In MOSIX clouds there is usually a high degree of trust,

i.e., a guarantee that applications are not viewed or tampered

with when running in remote clusters. Other possible safety

requirements are a secure network and that only authorized

nodes, with identifiable IP addresses, are included.

B. Processes

MOSIX processes are usually user applications that are

suitable and can benefit from migration. MOSIX processes

are created by the “mosrun” command. MOSIX processes

are started from standard Linux executables, but run in an

environment that allows each process to migrate from one node

to another. The node in which a process was created is called

its home-node. [4]. Child processes of MOSIX processes

remain under the MOSIX discipline (with the exception of the

native utility, that allows programs, mainly shells, already run-

ning under mosrun, to spawn children in native Linux mode).

Below, all references to processes mean MOSIX processes.

III. UNIQUE FEATURES OF MOSIX

The unique features of MOSIX are intended to provide users

and applications with the impression of running on a single

system.

A. Resource discovery

Resource discovery is performed by an on-line informa-

tion dissemination algorithm, providing each node in all the

clusters with the latest information about availability and the

state of system-wide resources [2]. The algorithm is based

on a randomized gossip dissemination, in which each node

regularly monitors the state of its resources, including the

CPU speed, current load, free and used memory, etc. This

information, along with similar information that has been

recently received by that node is routinely sent to randomly

chosen nodes. A higher probability is given to choosing target

nodes in the local cluster.

Information about newly available resources, e.g., nodes that

have just joined, is gradually disseminated across the active

nodes, while information about disconnected nodes is quickly

phased out. A study of bounds for the age properties and the

rates of propagation of the above algorithm was presented in

[2].

B. Process migration

MOSIX supports (preemptive) process migration [4] among

nodes in a cluster and in a cloud. Process migration can be

triggered either automatically or manually. The migration itself

amounts to copying the memory image of the process and set-

ting its run-time environment. To reduce network occupancy,

the memory image is often compressed using LZOP [9].

Automatic migrations are supervised by on-line algorithms

that continuously attempt to improve the performance, e.g.,

by load-balancing; by migrating processes that requested more

than the available free memory (assuming that there is another

node with sufficient free memory); or by migrating processes

from slower to faster nodes. These algorithms are particularly

useful for applications with unpredictable or changing resource

requirements and when several users run simultaneously.

Automatic migration decisions are based on (run-time)

process profiling and the latest information on availability

of resources, as provided by the information dissemination

algorithm. Process profiling is performed by continuously

collecting information about its characteristics, e.g., size, rates

of system-calls, volume of IPC and I/O. This information is

then used by competitive on-line algorithms [7] to determine

the best location for the process. These algorithms take into

account the respective speed and current load of the nodes,

the size of the migrated process vs. the free memory available

in different nodes, and the characteristics of the processes.

This way, when the profile of a process changes or when

new resources become available, the algorithm automatically



responds by considering reassignment of processes to better

locations.

C. The run-time environment

MOSIX is implemented as a software layer that allows

applications to run in remote nodes, away from their respective

home-nodes. This is accomplished by intercepting all system-

calls, then if the process was migrated, most of its system-calls

are forwarded to its home-node, where they are performed on

behalf of the process as if it was running in the home-node,

then the results are sent back to the process.

In MOSIX, applications run in an environment where even

migrated processes seem to be running in their home-nodes.

As a result, users do not need to know where their programs

run, they need not modify applications, link applications with

any library, login or copy files to remote nodes. Furthermore,

file and data consistency, as well as most traditional IPC

mechanisms such as signals, semaphores and process-ID’s are

intact.

The outcome is a run-time environment where each user gets

the impression of running on a single computer. The drawback

of this approach is increased overheads, including management

of migrated processes and networking.

1) Overhead of migrated processes: The following four

real-life applications, each with a different amount of I/O,

illustrate the overhead of running migrated processes. The

first application, RC, is an intensive CPU (satisfiability)

program. The second application, SW (proteins sequences),

uses a small amount of I/O. The third program, JELlium

(molecular dynamics), uses a larger amount of I/O. Finally,

BLAT (bioinformatics) uses a moderate amount of I/O.

We used identical Xeon 3.06GHz servers that were con-

nected by a 1Gb/s Ethernet and ran each program in three

different ways:

1) As a local (non-migrated) process.

2) As a migrated MOSIX process to another node in the

same cluster.

3) As a migrated MOSIX process to a node in a remote

cluster, located about 1 KM away.

The results (averaged over 5 runs) are shown in Table I.

The first four rows show the Local run-times (Sec.), the total

amounts of I/O (MB), the I/O block size (KB) and the number

of system-calls performed by each program. The next two

rows list the run-times of migrated MOSIX processes and the

slowdowns (vs. the Local times) in the same cluster. The last

two rows show the run-times and the slowdowns in the remote

cluster across campus.

TABLE I
LOCAL VS. REMOTE RUN-TIMES (SEC.)

RC SW JEL BLAT

Local 723.4 627.9 601.2 611.6

Total I/O (MB) 0 90 206 476

I/O block size – 32KB 32KB 64KB

Syscalls 3,050 16,700 7,200 7,800

Same cluster 725.7 637.1 608.2 620.1

Slowdown 0.32% 1.47% 1.16% 1.39%

Remote cluster 727.0 639.5 608.3 621.8

Slowdown 0.50% 1.85% 1.18% 1.67%

Table I shows that with a 1Gb/s Ethernet, the average

slowdown (vs. the Local times) of all the tested programs

was 1.085% in the same cluster, and 1.3% across campus,

an increase of only 0.215%. These results confirm the claim

that MOSIX is suitable to run compute bound and applications

with moderate amounts of I/O over fast networks.

2) Migratable sockets: Migratable sockets allow processes

to exchange messages by direct communication, bypassing

their respective home-nodes. For example, if process X whose

home-node is A and runs on node B wishes to send a message

over a socket to process Y whose home-node is C and runs

on node D, then without a migratable socket, the message has

to pass over the network from B to A to C to D. Using direct

communication, the message will pass directly from B to D.

Moreover, if X and Y run on the same node, then the network

will not be used at all.

To facilitate migratable sockets, each MOSIX process can

own a “mailbox”. MOSIX Processes can send messages to

mailboxes of other processes anywhere in other clusters (that

are willing to accept them).

Migratable sockets make the location of processes transpar-

ent, so the senders do not need to know where the receivers

run, but only to identify them by their home-node and process-

ID (PID) in their home-node.

Migratable sockets guarantee that the order of messages per

receiver is preserved, even when the sender(s) and receiver

migrate several times.

3) A secure run-time environment: The MOSIX software

layer guarantees that a migrated (guest) process cannot modify

or even access local resources other than CPU and memory in

a remote (hosting) node. Due care is taken to ensure that those

few system-calls that are performed locally, cannot access

resources in the hosting node, while the majority are forwarded

to the home-node of the process. The net result is a secure run-

time environment (sandbox), protecting the host from stray

guest processes.



D. The priority method

The priority method ensures that local processes and pro-

cesses with a higher priority can always move in and push

out all processes with a lower priority. The priority method

allows flexible use of nodes within and among groups. By

default, guest processes are automatically moved out whenever

processes of the cluster’s owner or other more privileged

processes are moved in.

Owners of clusters can determine from which other cluster

they are willing to accept processes and which clusters to

block. Processes from unrecognized clusters are not allowed

to move in. Note that the priority applies to the home-node of

each process rather than to where it happens to arrive from.

By proper setting of the priority, two or more private clusters

can be shared (symmetrically or asymmetrically) among users

of each cluster. Public clusters can also be set to be shared

among users of private clusters.

E. Flood control

Flooding can occur when a user creates a large number

of processes, either unintentionally or with the hope that

somehow the system will run it. Flooding can also occur when

other clusters are disconnected or reclaimed, causing a large

number of processes to migrate back to their respective home-

clusters.

MOSIX has several built-in features to prevent flooding.

For example, the load-balancing algorithm does not permit

migration of a process to a node with insufficient free memory.

Another example is the ability to limit the number of guest

processes per node.

To prevent flooding by a large number of processes, includ-

ing returning processes, each node can set a limit on the num-

ber of local processes. When this limit is reached, additional

processes are automatically frozen and their memory images

are stored in secondary storage. This method ensures that a

large number of processes can be handled without exhausting

the CPU and memory.

Frozen processes are reactivated in a circular fashion, to

allow some work to be done without overloading the owner’s

nodes. Later, as more resources become available, the load-

balancing algorithm migrates running processes away, thus

allowing reactivation of more frozen processes.

F. Disruptive configurations

In a MOSIX cloud, authorized administrators of each private

cluster can connect (disconnect) it to (from) the cloud at any

time. In a Linux cluster, all open connections to other clusters

are closed, which may result in losing running jobs. In the case

of a MOSIX cluster, all guest processes (if any) are moved out

and all local processes that were migrated to other MOSIX

clusters are brought back. Note that guest processes can be

migrated to any available node in the cloud - not necessarily

to their respective home-nodes. It is therefore recommended

that users do not login and/or initiate processes from remote

MOSIX clusters, since if they did so, then their processes

would have nowhere to return.

1) Long-running processes: The process migration, the

freezing and the gradual reactivation mechanisms provide

support to applications that need to run for a long time, e.g.,

days or even weeks, in different clusters. As explained above,

before a MOSIX cluster is disconnected, all guest processes

are moved out. These processes are frozen in their respective

home-nodes and are gradually reactivated when system-wide

MOSIX nodes become available again. For example, long

processes from one department migrate at night to unused

nodes in another department. During the day most of these

processes are frozen in their home-cluster until the next

evening.

IV. OTHER SERVICES

This section describes additional services that are provided

to MOSIX processes.

A. Checkpoint and recovery

Checkpoint and recovery are supported for most computa-

tional MOSIX processes. When a process is checkpointed, its

image is saved to a file. If necessary, the application can later

be recovered from that file and continue to run from the point

it was last checkpointed. Checkpoints can be triggered by the

program itself, by a manual request or can automatically be

taken periodically.

Some processes cannot be checkpointed and other processes

may not run correctly after recovery. For example, for security

reasons checkpoint of processes with setuid/setgid privileges

is not permitted. In general, checkpoint and recovery are not

supported for processes that depend heavily on their Linux

environment, such as processes with open pipes or sockets.

Processes that can be checkpointed but may not run cor-

rectly after being recovered include processes that rely on

process-ID’s of either themselves or other processes; processes

that rely on parent-child relations; processes that rely on ter-

minal job-control; processes that coordinate their input/output

with other running processes; processes that rely on timers

and alarms; processes that cannot afford to lose signals; and

processes that use system-V semaphores and messages.

B. Running in a virtual machine

MOSIX can run in native Linux mode or in a Virtual Ma-

chine (VM). In native mode, performance is slightly better [8],



but a VM can run on top of any operating system that supports

virtualization, including OS-X and Windows.

C. Monitors

The monitor, mosmon provides information about resources

in the cluster, e.g., CPU-speed, load, free vs. used memory,

swap space, number of active nodes, etc. Type “help” to see

the available options.

V. DOCUMENTATION

The MOSIX web includes a wiki, a list of frequently asked

questions (FAQ) and a list of selected MOSIX publications [5].

The wiki includes installation and configuration instructions,

information about the latest release; the change-log; the ad-

ministrator’s, user’s and programmer’s guides and the MOSIX

manuals; overview and tutorial presentations; a list of MOSIX

related publications and the MOSIX history.

VI. OBTAINING A COPY

Subject to the MOSIX software license agreement, a copy

of MOSIX is available via the MOSIX web [5].

VII. CONCLUSIONS

MOSIX is a runtime management system that consists of a

comprehensive set of tools for sharing computational resources

in Linux clusters and clouds. Its main features are geared for

ease of use by providing the impression of running on a single

computer with many cores. This is accomplished by preserving

the interface and the run-time environment of the login (home)

node for applications that run in other nodes. As a result, users

need not modify or link applications with any library, they

need not login or copy files to remote nodes or know where

their programs run.

The unique features of MOSIX include automatic resource

discovery, dynamic workload distribution by process migra-

tion, a priority method that allows processes to migrate among

nodes in a cloud, to take advantage of available resources

beyond the allocated nodes in any private cluster. This is

particularly useful in shared clusters or when it is necessary

to allocate a large number of nodes to one group, e.g., to

meet a deadline. The flood prevention and the disruptive con-

figuration provisions allow an orderly migration of processes

from disconnecting clusters, including long running processes

when remote resources are no longer available. Other unique

features include live queuing and a tool to run applications on

clouds, without the need to pre-copy files to these clusters.

REFERENCES

[1] http://en.wikipedia.org/wiki/Single system image
[2] Amar L., Barak A., Drezner Z. and Okun M., “Randomized Gossip

Algorithms for Maintaining a Distributed Bulletin Board with Guar-
anteed Age Properties,”. Concurrency and Computation: Practice and

Experience, Vol. 21, pp. 1907-1927, 2009.
[3] Barak A., Guday G. and Wheeler R., The MOSIX Distributed Operating

System, Load Balancing for UNIX. LNCS Vol. 672, Springer-Verlag,
ISBN 0-387-56663-5, New York, May 1993.

[4] Barak A., La’adan O. and Shiloh A., “Scalable Cluster Computing with
MOSIX for Linux,” Proc. 5th Annual Linux Expo, Raleigh, NC, pp.
95–100, 1999.

[5] http://www.MOSIX.org.
[6] Barak A., Shiloh A. and Amar L., “ An Organizational Grid of Federated

MOSIX Clusters,” Proc. 5-th IEEE International Symposium on Cluster

Computing and the Grid (CCGrid05), Cardiff, 2005.
[7] Keren A., and Barak A., “Opportunity Cost Algorithms for Reduction of

I/O and Interprocess Communication Overhead in a Computing Cluster,”
IEEE Tran. Parallel and Dist. Systems, 14(1), pp. 39–50, 2003.

[8] Maoz T., Barak A. and Amar L., “Combining Virtual Machine Migration
with Process Migration for HPC on Multi-Clusters and Grids,” Proc.

IEEE Cluster 2008, Tsukuba, 2008.
[9] http://www.lzop.de.


