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AbstractÐA new method is presented for job assignment to and reassignment between machines in a computing cluster. Our method

is based on a theoretical framework that has been experimentally tested and shown to be useful in practice. This ªopportunity costº

method converts the usage of several heterogeneous resources in a machine to a single homogeneous ªcost.º Assignment and

reassignment are then performed based on that cost. This is in contrast to traditional, ad hoc methods for job assignment and

reassignment. These treated each resource as an independent entity with its own constraints, as there was no clean way to balance

one resource against another. Our method has been tested by simulations, as well as real executions, and was found to perform well.

Index TermsÐNetworks, resource allocation, metacomputers.
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1 INTRODUCTION

THE performance of any cluster of workstations improves
when its resources are used wisely. A poor job assign-

ment strategy can result in heavily unbalanced loads and
thrashing machines, which cripples the cluster's computa-
tional power. Resources can be used more efficiently if the
cluster can migrate jobsÐmoving them transparently from
one machine to another. The Mosix [1], [2] system, for
example, allows this kind of transparent job migration in
the Unix environment. However, even systems that can
reassign jobs can still benefit from a carefully-chosen
assignment strategy.

Job migration is attractive because the arrival rate and

resource demands of incoming jobs are unpredictable. In

light of this unpredictability, jobs will sometimes be

assigned to a nonoptimal machine, and migration gives

the system a second (or third, etc.) chance to fix such a

mistake. It is intuitively clear that the ability to migrate jobs

could lead to better performanceÐthat is, faster completion

times for the average job. Unless it is known where a job

should be at any given time, however, the reassignment

strategy could also make mistakes.
Determining the optimal location for a job is a

complicated problem. The most important complication is

that the resources available on a cluster of workstations are

heterogeneous. In effect, the costs for memory, CPU,

process communication and so forth are incomparable. They

are not even measured in the same units: communication

resources are measured in terms of bandwidth, memory in

terms of space, and CPU in terms of cycles. The natural

greedy strategy, balancing the resources across all of the
machines, is not even well-defined.

In this paper, we present a new job assignment strategy
based on ªeconomicº principles and competitive analysis.
This strategy enables us to manage heterogeneous resources
in a near-optimal fashion. The key idea of this strategy is to
convert the total usage of several heterogeneous resources,
such as memory and CPU, into a single homogeneous
ªcost.º Jobs are then assigned to the machine where they
have the lowest cost.

This economic strategy provides a unified algorithmic
framework for allocation of computation, communication,
memory, and I/O resources. It allows the development of
near-optimal online algorithms for allocating and sharing
these resources.

Our strategy guarantees near-optimal end-to-end perfor-
mance for the overall system on each single instance of job
generation and resource availability. This is accomplished
using online algorithms that know nothing about the future,
assume no correlation between past and future, and are
only aware of the state. In spite of this, one can rigorously
prove that their performance will always be comparable to
that of the optimal prescient strategy.

This work shows that the unified opportunity cost
approach offers good performance in practice. First, we
performed tests using a simulated cluster and a ªtypicalº
series of incoming jobs. Our method, with and without
reassignments, was compared against the methods of PVM,
a dominant static job assignment strategy, and Mosix, one
of the more successful systems that support transparent
process migration. Each method was given an identical
stream of jobs. Over 3,000 executions of this Java-based
simulation were performed, each representing at least
10,000 simulated seconds. When no reassignments were
allowed, our method was shown to be a dramatic
improvement over PVM. When reassignments were al-
lowed, our method was substantially better than that of
the highly tuned, but ad hoc, Mosix strategy.
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A second series of tests was performed on a real system,

to validate this simulation. This system consisted of a

collection of Pentium 133, Pentium Pro 200, and Pentium II

machines with different memory capacity, connected by

Fast Ethernet, running BSD/OS [3]. The physical cluster

and the simulated cluster were slightly different, but the

proportional performance of the various strategies was very

close to that of the Java simulation. This indicates that the

simulation appropriately reflects events on a real system.
In Section 2, we will discuss the model we used and our

assumptions. In Sections 3 and 4, we will describe our

algorithm and the theoretical guarantees that come with it.

In Section 5, we will show our experimental evidence that

this strategy is useful in practice. Section 6 concludes the

paper. For additional information about this research,

consult the following web site: http://www.cnds.jhu.edu/

projects/metacomputing.

2 THE MODEL

The goal of this work is to improve performance in a cluster

of n machines, where machine i has a CPU resource of

speed rc�i� and a memory resource of size rm�i�. We will

abstract out all other resources associated with a machine,

although our framework can be extended to handle

additional resources.
There is a sequence of arriving jobs that must be assigned

to these machines. Each job is defined by three parameters:

. Its arrival time, a�j�,

. The number of CPU seconds it requires, t�j�, and

. The amount of memory it requires, m�j�.
We assume that m�j� is known when a job arrives, but

t�j� is not. A job must be assigned to a machine immediately

upon its arrival, and may or may not be able to move to

another machine later.
Let J�t; i� be the set of jobs in machine i at time t. Then

the CPU load and the memory load of machine i at time t

are defined by:

lc�t; i� � jJ�t; i�j;
and

lm�t; i� �
X
j"J�t;i�

m�j�;

respectively.
We will assume that when a machine runs out of main

memory, it is slowed down by a multiplicative factor of � ,

due to disk paging. The effective CPU load of machine i

at time t; L�t; i�, is therefore:

lc�t; i� if lm�t; i� < rm�i�;
and lc�t; i��� otherwise:

For simplicity, we will also assume that all machines

schedule jobs fairly. That is, at time t, each job on machine i

will receive 1=L�t; i� of the CPU resource. A job's comple-

tion time, c�j�, therefore satisfies the following equation:

Z c�j�

a�j�

rc�i�
L�t; i� � t�j�;

where i is the machine the job is on at any given time.
The slowdown of a job is equal to

c�j� ÿ a�j�
t�j� :

Our goal in this paper is to develop a method for job

assignment and/or reassignment that will minimize the

average slowdown over all jobs.

3 SUMMARY OF THEORETICAL BACKGROUND AND

RELATED WORK

This section presents the known theoretical background

that forms the basis for our work. After presenting the

relevant theory, we evaluate the effectiveness of our

(online) algorithms using their competitive ratio, measured

against the performance of an optimal offline algorithm. An

online algorithm ALG is c-competitive if for any input

sequence I, ALG�I� � c OPT�I� � �, where OPT is the

optimal offline algorithm and � is a constant.

3.1 Introduction and Definitions

The theoretical part of this paper will focus on how to

minimize the maximum usage of the various resources on a

systemÐin other words, the best way to balance a system's

load. Practical experience suggests that one algorithm for

doing so, described in [4], also meets our performance goal.

This performance goal is to minimize the average slow-

down, which corresponds to the sum of the squares of the

loads.
In preparation for a discussion of this algorithm,

ASSIGN-U, we will examine this minimization problem

with three different machine models and two different

kinds of jobs. The three machine models are:

1. Identical Machines. All of the machines are iden-
tical, and the speed of a job on a given machine is
determined only by the machine's load.

2. Related Machines. The machines are identical
except that some of them have different speedsÐin
the model above, they have different rc values, and
the memory associated with these machines is
ignored.

3. Unrelated Machines. Many different factors can
influence the effective load of the machine and the
completion times of jobs running there. These factors
are known.

The two possible kinds of jobs are:

1. Permanent Jobs. Once a job arrives, it executes
forever without leaving the system.

2. Temporary Jobs. Each job leaves the system when it
has received a certain amount of CPU time.

We will also examine a related problem, called the online

routing problem.
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3.2 Identical and Related Machines

For now, we will assume that no reassignments are

possible. We also temporarily assume that the only resource

is CPU time. Our goal, therefore, is to minimize the

maximum CPU load.
When the machines are identical, and no other resources

are relevant, the greedy algorithm performs well. This

algorithm assigns the next job to the machine with the

minimum current CPU load. The greedy algorithm has a

competitive ratio of 2ÿ 1=n (see [5]). When the machines

are related, the greedy algorithm has a competitive ratio of

log n.

3.3 Unrelated Machines

ASSIGN-U is an algorithm for unrelated machines and

permanent job assignments, based on an exponential

function for the ªcostº of a machine with a given load [6].

This algorithm assigns each job to a machine to minimize

the total cost of all of the machines in the cluster. More

precisely, let:

. a be a constant, 1 < a < 2,

. li�j� be the load of machine i before assigning job j,
and

. pi�j� be the load job j will add to machine i.

The online algorithm will assign j to the machine i that

minimizes the marginal cost

Hi�j� � ali�j��pi�j� ÿ ali�j�:
This algorithm is O�logn� competitive for unrelated

machines and permanent jobs. The work presented in [7]

extends this algorithm and competitive ratio to temporary

jobs, using up to O�logn� reassignments per job. A reassign-

ment moves a job from its previously assigned machine to a

new machine. In the presence of reassignments, let

. hi�j� be the load of machine i just before j was last
assigned to i.

When any job is terminated, the algorithm of [7] checks a

ªstability conditionº for each job j and each machine M.

This stability condition, with i denoting the machine on

which j currently resides, is:

ahi�j��pi�j� ÿ ahi�j� �
2��alM �j��pM �j� ÿ alM �j��

If this stability condition is not satisfied by some job j, the
algorithm reassigns j to machine M that minimizes HM�j�.

For unrelated machines and temporary jobs, without job

reassignment, there is no known algorithm with a compe-

titive ratio better than n.

3.4 Online Routing of Virtual Circuits

The ASSIGN-U algorithm above minimizes the maximum

usage of a single resource. In order to extend this algorithm

to several resources, we examine the related problem of

online routing of virtual circuits. The reason this problem is

applicable will be discussed shortly. In this problem, we are

given:

. A graph G(V,E), with a capacity u�e� on each edge e,

. A maximum load mx, and

. A sequence of independent requests �sj; tj; p : E !
�0;mx�� arriving at arbitrary times. sj and tj are the
source and destination nodes, and p�j� is the
required bandwidth. A request that is assigned to
some path P from a source to a destination increases
the load le on each edge e 2 P by the amount
pe�j� � p�j�=u�e�.

Our goal is to minimize the maximum link congestion,

which is the ratio between the bandwidth allocated on a

link and its capacity.
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Minimizing the maximum usage of CPU and memory,

where memory usage is measured in the fraction of

memory consumed, can be reduced to the online routing

problem. This reduction works as follows: create two nodes,

{s; t} and n nonoverlapping two-edge paths from s to t.

Machine I is represented by one of these paths, with a

memory edge with capacity rm�i� and a CPU edge with

capacity rc�i�. Each job j is a request with s as the source, t

as the sink, and p a function that maps memory edges to the

memory requirements of the job and CPU edges to 1. The

maximum link congestion is the larger of the maximum

CPU load and the maximum memory (over) usage.
ASSIGN-U is extended further in [6] to address the online

routing problem. The algorithm computes the marginal cost

for each possible path P from sj to tj as follows:

HP �j� �
X

ale�pe�j� ÿ ale ;

and assigns request j to a path P that yields a minimum

marginal cost.
This algorithm is O�logn� competitive [6]. By reduction,

it produces an algorithm for managing heterogeneous

resources that is O�logn� competitive in its maximum usage

of each resource.

4 FROM THEORY TO PRACTICE

For each machine in a cluster of n machines, with

resources r1 . . . rk, we define that machine's cost to be:

Xk
i�1

f�n; utilization of ri�;
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where f is some function. In practice, using ASSIGN-U, we
choose f so that this sum is equal to:

Xn

i�1

aload on resource i;

where 1 < a < 2.
The load on a given resource equals its usage divided by

its capacity. We assign each resource a capacity equal to its
size times some constant factor �. For convenience, we
choose � so that the optimal prescient algorithm achieves a
maximum load of 1. Our algorithm can achieve loads as
high as O�logn�. We can therefore rewrite the summation
above as:

Xn

i�1

a
O�logn�� utilized ri

max usage of ri ;

or, with the right a,

Xk
i�1

n
utilized ri

maxusage of ri :

The marginal cost of assigning a job to a given machine is

the amount by which this sum increases when the job is

assigned there. An ªopportunity costº approach to resource

allocation assigns jobs to machines in a way that minimizes

this marginal cost. ASSIGN-U uses an opportunity cost

approach.
In this paper, we are interested in only two resources,

CPU and memory, and we will ignore other considerations.

Hence, the above theory implies that given logarithmically

more memory than an optimal offline algorithm, ASSIGN-U

will achieve a maximum slowdown within O�logn� of the

optimal algorithm's maximum slowdown.
This does not guarantee that an algorithm based on

ASSIGN-U will be competitive in its average slowdown over

all processes. It also does not guarantee that such an

algorithm will improve over existing techniques. Our next

step was to verify that such an algorithm does, in fact,

improve over existing techniques in practice.
The memory resource easily translates into ASSIGN-U's

resource model. The cost for a certain amount of memory

usage on a machine is nu, where u is the proportional

memory utilization (used memory/total memory.) For the

CPU resource, we must know the maximum possible load.

Drawing on the theory, we will assume that L, the smallest

integer power of two greater than the largest load we have

seen at any given time, is the maximum possible load. This

assumption, while inaccurate, does not change the compe-

titive ratio of ASSIGN-U.

The cost for a given machine's CPU and memory load,

using our method, is:

n
used memory
total memory � nCPU load

L :

In general, we assign or reassign jobs so as to minimize

the sum of the costs of all the machines in the cluster.

To examine the behavior of this ªopportunity costº

approach, we evaluated four different methods for job

assignment. PVM and MOSIX are standard systems. E-PVM

and E-MOSIX are schedulers of our own design, using this

algorithm to assign and reassign jobs.

1. PVM (for ªParallel Virtual Machineº) is a popular
metacomputing environment for systems without
preemptive process migration. Unless the user of the
system specifically intervenes, PVM assigns jobs to
machines using a strict Round-Robin strategy. It
does not reassign jobs once they begin execution.

2. Enhanced PVM (see Fig. 1) is our modified version
of PVM. It uses the opportunity cost-based strategy
to assign each job as it arrives to the machine where
the job has the smallest marginal cost at that time.
No other factors come into play. As with PVM,
initial assignments are permanent. We sometimes
abbreviate Enhanced PVM as E-PVM.

3. Mosix is a set of kernel enhancements to BSD/OS
that allows the system to migrate processes from one
machine to another without interrupting their work.
Mosix uses an adaptive load-balancing strategy that
also endeavors to keep some memory free on all
machines. In Mosix, a process becomes a candidate
for migration when the difference between the
relative loads of a source machine and a target
machine is above a certain threshold. Priority to
migrate is given to older processes that are CPU
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bound. Mosix machines accumulate information
about the processes at regular intervals (e.g., every
second) and then exchange this information with
other machines. Mosix is not omniscient; when the
system is exchanging process information in
preparation for possible process reassignment,
each machine is only in contact with a limited
selection of other machines. The limitations on
Mosix's knowledge make it possible to make
decisions quickly. The waiting period between
migrations minimizes the migration overhead.

4. Enhanced Mosix (see Fig. 2) is our modified version
of Mosix, which uses the opportunity cost-based
strategy for process migration. It assigns or reassigns
jobs to minimize the sum of the costs of all of the
machines. Enhanced Mosix has the same limits on its
knowledge and migrations as unenhanced Mosix.
We sometimes abbreviate Enhanced Mosix as
E-Mosix.

5 EXPERIMENTAL RESULTS

Our first test of the ASSIGN-U algorithm was a Java

simulation of the four job (re)assignment methods. We

based our simulated cluster on the local cluster of six

Pentium machines, described in Table 1. Each incoming job

required 2=r seconds of CPU time on the fastest machine

and �1=m� percent of the largest machine memory, where r

and m were independently generated random numbers

between 0 and 1. (This distribution is based on the

observations of real-life processes in [8].) Since these

algorithms are meant for metacomputing clusters, five

percent of all jobs instead required 20=r seconds, and were

divided into one to 20 parallel components. Jobs arrived at

about one per ten seconds for ten thousand simulated

seconds, distributed randomly to provide a variety of load

conditions to each of our methods. All random distributions

were uniform.

In each execution of the simulation, all four methods

were provided with an identical scenario, where the same

jobs arrived at the same rate. Mosix has been engineered to

minimize migration overhead. Therefore, to keep the

number of simulation parameters low, the cost of migration

was ignored in the Java simulation. Other tests, described in

Section 5.2, actually migrated jobs on a Mosix system,

incurring all the normal costs.

We picked these simulation parameters, and miscella-

neous factors, such as the thrashing constant � (10),

conservatively. Our goal was to provide E-PVM and
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E-Mosix with a harsh testing environment less favorable to

them than the real world.

5.1 Simulation Results

The results of the simulations were evaluated in two

different ways:

. An important concern is the overall slowdown
experienced using each of the four methods. The
average slowdown by execution is an unweighted
average of all of the simulation results, regardless
of the number of jobs in each execution. The average
slowdown by job is the average slowdown over all of
the jobs in all of the executions of the simulation.
These results, incorporating 3000 executions, are
given in Table 2.

. The behavior of Enhanced PVM and Enhanced
Mosix is significantly different in lightly loaded
and heavily loaded scenarios. This behavior is
illustrated in Figs. 3, 4, 5, and 6, detailing the first
1,000 executions of the simulation.

Each point in the figures above represents a single

execution of the simulation for the two named methods. In

Fig. 3, the X axis is the average slowdown for PVM, and the

Y axis is the average slowdown for enhanced PVM.

Similarly, in Fig. 4, the X axis is the average slowdown for

Mosix, and the Y axis is the average slowdown for

enhanced Mosix. The light line is defined by ªx � y.º

Above this line, the unenhanced algorithm does better than

the enhanced algorithm. Below this line, the enhanced

algorithm does better than the unenhanced algorithm.

Enhanced PVM, as Table 2 has already shown, does

significantly better than straight PVM in almost every

circumstance. More interesting, however, is the behavior of

enhanced Mosix when compared to Mosix. The larger

Mosix's average slowdown was on a given execution, the

more improvement our enhancement gave. Intuitively,

when an execution was hard for all four models, Enhanced

Mosix did much better than unenhanced Mosix. If a given

execution was relatively easy, and the system was not

heavily loaded, the enhancement had less of a positive

effect.

This can be explained as follows. When a machine

becomes heavily loaded or starts thrashing, it does not just

affect the completion time for jobs already submitted to the

system. If the machine does not become unloaded before

the next set of large jobs is submitted to the system, it is

effectively unavailable to them, increasing the load on all

other machines. If many machines start thrashing or

become heavily loaded, this effect will build on itself. Every

incoming job will take up system resources for a much

longer span of time, increasing the slowdown experienced

by jobs that arrive while it computes. Because of this

pyramid effect, a ªwiseº initial assignment of jobs and

careful rebalancing can result (in the extreme cases) in a

significant improvement over standard Mosix, as shown in

some of the executions in Fig. 4.

It is particularly interesting to note that, as seen in Table 2

and Fig. 5, the enhanced PVM method, which makes no

reassignments at all, manages to achieve respectable

(though inferior) performance compared to Mosix. This

emphasizes the power of the opportunity cost approach. Its

performance on a normal system is not overwhelmed by the

performance of a much superior system that can correct

initial assignment mistakes.

The importance of migration is demonstrated by Fig. 6.

Even when using the opportunity cost algorithm, it is still

very useful to have the migration ability in the system. In

fact, Enhanced Mosix outperformed Enhanced PVM in

almost all of the cases, often considerably.
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5.2 Real System Executions

Our algorithms were also tested on a real cluster. The same

model for incoming jobs was used, each implemented with

a program that cycled through an array of the appropriate

size, performing calculations on the elements therein, for

the appropriate length of time. The jobs were assigned

using the PVM, Enhanced PVM, and Mosix strategies.

Enhanced Mosix has not yet been implemented on a real

system.

Table 3 shows the slowdowns for 50 executions on this

real cluster. Figs. 7 and 8 show the results point-by-point.

The results of the real system executions are as follows.

The test results in Table 3 imply that the real-life

thrashing constant and various miscellaneous factors

increased the average slowdown. This is the expected result

of picking conservative simulation parameters. More im-

portantly, these results do not substantially change the

relative values. Mosix performed substantially better on a

real system, as expected, but Enhanced PVM also per-

formed better, compared to regular PVM. We consider this

to be a strong validation of our initial Java simulations and

of the merits of this opportunity cost approach.

Table 4 shows the ratio of the slowdowns for the various

methods. In the table, column 2 shows the performance

ratio between PVM's static and Mosix's adaptive job

assignments. This demonstrates the value of job migration.

Column 3 shows that the opportunity cost approach closes a

considerable portion of that gap. Column 4 shows the

impact of the opportunity cost approach on the static

system.

The results presented in Table 2, Table 3, and Table 4

give strong indications that the opportunity cost approach

is among the best methods for adaptive resource allocation

in a scalable computing cluster.

6 CONCLUSIONS

The opportunity cost approach is a universal framework for

efficient allocation of heterogeneous resources. The theore-

tical guarantees are weak: one can only prove a logarithmic

bound on the performance difference between the algo-

rithm and the optimum offline schedule. However, the

optimum offline schedule is not really an option. In reality,

our algorithm competes with online heuristics that lack any

guarantee of comparable scope.

In practice, this approach yields simple algorithms that

significantly outperform widely used and carefully opti-

mized methods. We conclude that the theoretical guaran-

tees of logarithmic optimality is a good indication that the

algorithm will work well in practice.
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