Overview of MOSIX

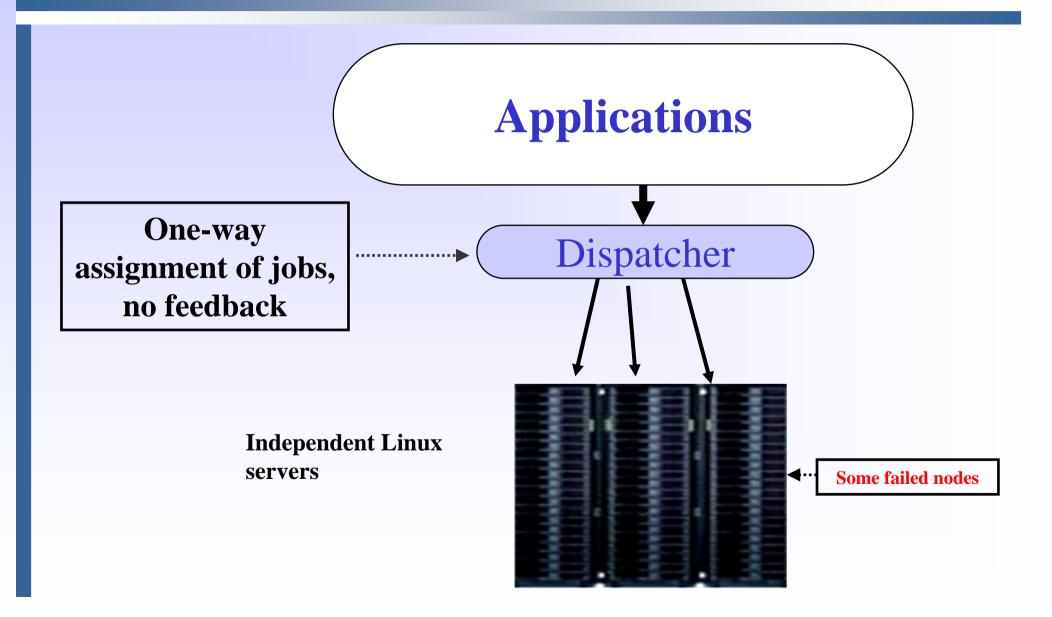
http://www.MOSIX.org

Background

Clusters and multi-cluster Clouds are popular platforms for running parallel applications

In most cases, users want to run multiple jobs concurrently, with minimal burden how the resources are managed

- Users prefer not to:
 - Modify applications
 - Copy files or login to different nodes
 - Lose jobs when some nodes are disconnected
- Users don't know (care):
 - What is the configuration, the status and the locations of the nodes
 - Availability of resources, e.g. CPU speed, load, free memory, etc.

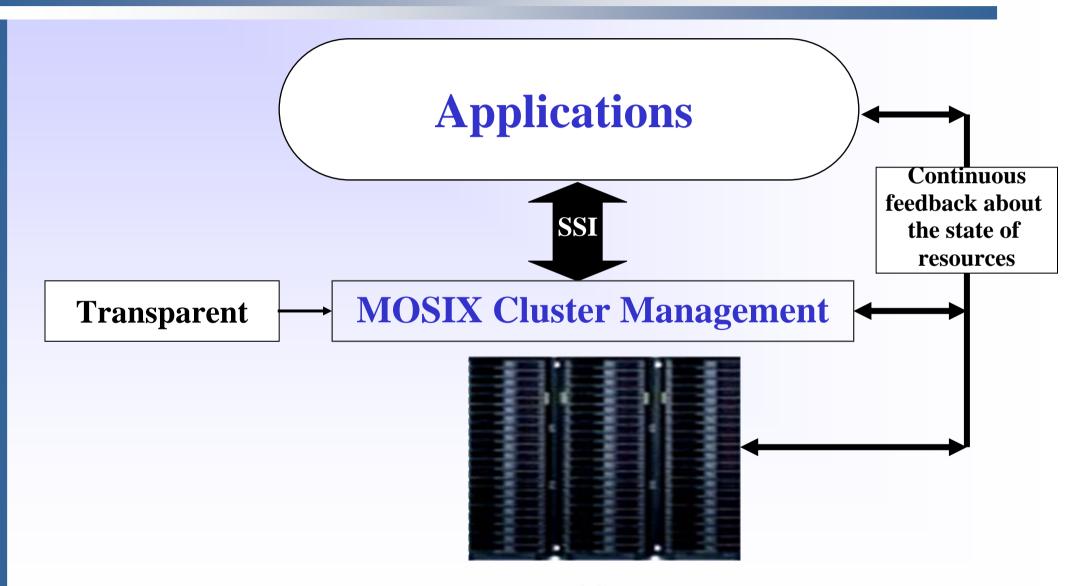

Traditional management packages

Most cluster management packages are batch dispatchers that place the burden of management on users

Some examples:

- Use static assignment of jobs to nodes
 - May lose jobs when nodes are disconnected
 - May lose overdue jobs
- Not transparent to applications
 - May require to link application with special libraries
 - View the cluster as a set of independent nodes
 - One user per node, cluster partition for multi-users

Traditional management packages


What is MOSIX (Multi-computer OS)

A cluster management system for Linux clusters and multiclusters Clouds

Main feature: Single-Systems Image (SSI)

- Users can login on any node and need not know where their programs run
- Automatic resource discovery
 - By continuous monitoring of the state of the resources
- Dynamic workload distribution by process migration
 - Automatic load-balancing
 - Automatic migration from slower to faster nodes and from nodes that run out of free memory

MOSIX is a unifying management layer

In a MOSIX cluster All the active nodes run like one server with many cores

MOSIX Version 4 (MOSIX-4)

- Geared for parallel computing, especially for application with low-moderate amounts of I/O
- Main features:
 - Provides a SSI by process migration
 - Process migration within a cluster and among different clusters
 - Secure run time environment (sandbox) for guest processes
 - Supports checkpoint and recovery

MOSIX processes

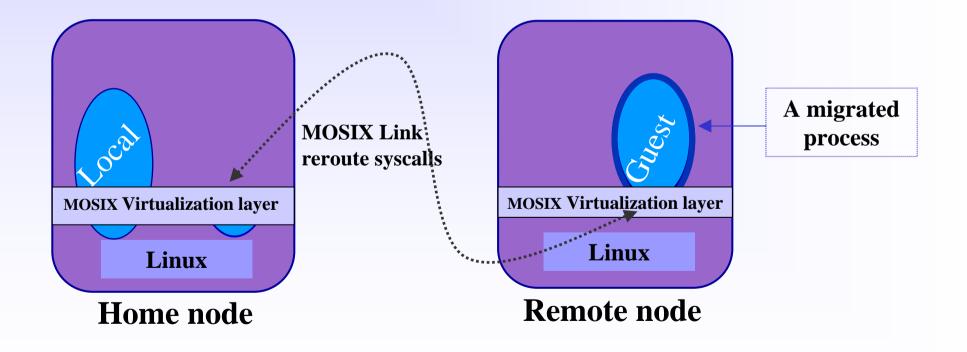
- Applications that can benefit from migration
 - Created by the ``mosrun'' command
 - Processes are started from standard Linux executables, but run in an environment that allows each process to migrate from one node to another
 - Each MOSIX process has a unique home-node, which is usually the node in which the process was created

Examples: running interactive jobs

Possible ways to run *myprog*:

- > myprog run as a Linux process on the local node
- > **mosrun** *myprog* run as a MOSIX process in the local cluster
- > **mosrun -b** *myprog* assign the process to the least loaded node
- > mosrun -b -m700 myprog assign the process only to a nodes with 700MB of free memory

How does it work


- Automatic resource discovery by a "gossip" algorithm
 - Provides each node with the latest info about the cluster/multi-cluster resources (e.g free nodes)
 - All the nodes disseminate information about relevant resources: speed, load, memory, local/remote I/O, IPC
 - Info exchanged in a random fashion to support scalable configurations and overcome failures
 - Useful for high volume processing
 - Example: a compilation farm assign the next compilation to least loaded node

Dynamic workload distribution

- A set of algorithms that match between required and available resources
 - Geared to maximize the performance
 - Initial allocation of processes to the best available nodes in the user's local cluster
 - Not to nodes outside the local cluster
 - Multi-cluster-wide process migration
 - Automatic load-balancing
 - Automatic migration from slower to faster nodes
 - Authorized processes move to idle nodes in other clusters
- Outcome: users need not know the current state of the cluster and the multi-cluster resources

Core technologies

- **Process migration move the process context to a remote node**
- The MOSIX virtualization layer allow migrated processes to run in remote nodes, away from their creation (home) nodes

The MOSIX virtualization layer

Provides support for migrated processes

- By intercepting and forwarding most system-calls to the home node
- •Result: migrated processes seem to be running in their respective home nodes
 - The user's home-node environment is preserved
 - No need to change applications, copy files or login to remote nodes or to link applications with any library
 - Migrated processes run in a sandbox

Outcome: users get the illusion of running on one node

•Drawback: increased communication and virtualization overheads

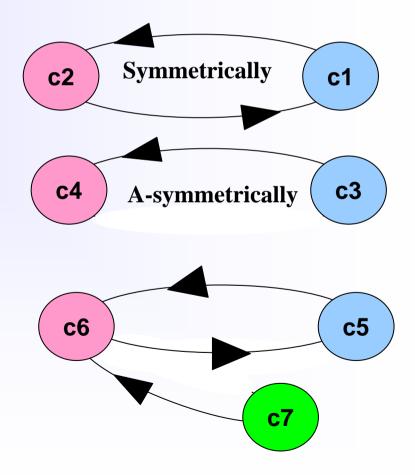
• Average overhead ~1% (over GEthernet) -reasonable vs. added cluster/multi-cluster services

Main multi-cluster features

- Administrating a multi-cluster
- Priorities among different clusters
- Monitoring
- Supports checkpoint and recovery
- Supports disruptive configurations

Administrating a multi-cluster

A collection of clusters, servers and workstations whose owners wish to cooperate from time to time


- Collectively administrated
 - Each owner maintains its private cluster
 - Determine the priorities vs. other clusters
 - Clusters can join or leave the multi-cluster at any time
 - Dynamic partition of nodes to private virtual clusters
 - Users of a group access the multi-cluster via their private clusters and workstations
- Process migration among different cluster

Outcome: each cluster and the multi-cluster performs like a single computer with multiple processors

The priority scheme

- Cluster owners can assign priorities to processes from other clusters
 - Local and higher priority processes force out lower priority processes
- Pairs of clusters could be shared, symmetrically(C1-C2) or asymmetrically(C3-C4)
- A cluster could be shared (C6) among other clusters (C5, C7) or blocked for migration from other clusters (C7)
- **Dynamic partitions** of nodes to private virtual clusters

Outcome: flexible use of nodes in shared clusters

When priorities are needed

- Scenario 1: one cluster, some users run many jobs, depriving other users from their fair share
- Solution: partition the cluster to several sub-clusters and allow each user to login to only one sub-cluster
 - Users in each sub-cluster can still benefit from idle nodes in the other sub-clusters
 - Processes of local users (in each sub-cluster) has higher priority over guest processes from other sub-clusters
- Scenario 2: some users run long jobs while other user need to run (from time to time) short jobs
- **Scenario 3:** several groups using a shared cluster
 - Sysadmin can assign different priorities to each group

Other services

- Checkpoint & recovery time basis, manually or by the applications
- **Built-in on-line monitor** for the local cluster resources
- **On-line web monitor** of the multi-cluster and each cluster
 - http://www.mosix.org/webmon

Disruptive configurations

When a cluster is disconnected:

- All guest processes move out
 - To available remote nodes or to the home cluster
- All migrated processes from that cluster move back
 - Returning processes are frozen (image stored) on disks
 - **Frozen** processes are reactivated gradually

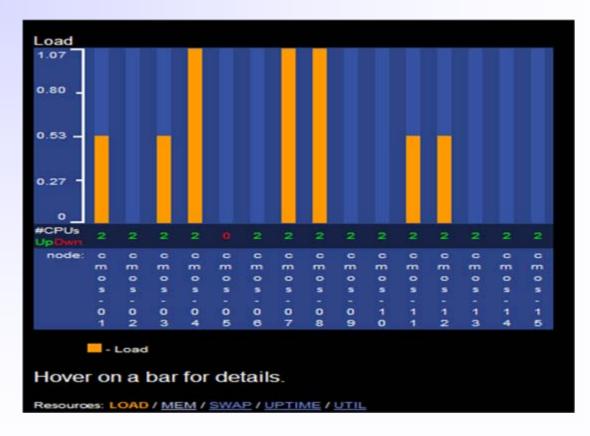
Outcome:

- Long running processes are not killed
- No overloading of nodes

Web monitor: www.MOSIX.org/webmon

Display:

- •Total number of nodes/CPUs
- •Number of nodes in each cluster
- Average load


Zooming on each cluster

Display:

•Load

- •Free/used memory
- •Swap space
- •Uptime

•Users

Conclusions

MOSIX is a comprehensive set of tools for automatic management of Linux clusters and multi-clusters

- Self-management algorithms for dynamic allocation of system-wide resources
 - Cross clusters performance nearly identical to a cluster
- Many supporting tools for ease of use
 - Includes an installation script and manuals
- Can run in native mode or in a virtual machine

Obtaining a copy of MOSIX

• At

http://www.MOSIX.org